当前位置: International >  Course >  Course Information

X034506:Introduction of Semiconductor Physics & Devices (《半导体物理与器件物理学》课程介绍)

[ 2013-07-09 ]

《半导体物理与器件物理学》课程介绍

Introduction of Semiconductor Physics & Devices

 

课程名称 (Course Name) 半导体物理与器件物理学 Semiconductor Physics & Devices

课程代码 (Course Code):X034506

学分/学时 (Credits/Credit Hours)3/54

开课时间 (Course Term )spring

开课学院(Course School: 电子信息与电气工程学院  SEIEE

任课教师(Teacher:  李晓春   LI XIAO CHUN

课程讨论时数(Course Hours: 0  小时(Hours)

课程实验数(Lab Hours: 0  小时(Hours)

 

课程内容简介(Course Introduction):

中文介绍

《半导体物理和器件》是近代集成电路设计和制造的重要理论基础。通过微电子技术,一个相当规模的电路或部件,甚至是一个整机或系统,可集成在一小块硅片或其它半导体基片上,这涉及到半导体物理、半导体器件、微电子工艺、电路与系统的设计以及计算机辅助设计、测试等内容非常宽广的知识。本课程旨在掌握半导体器件的特性、工作原理与设计理念,并深入理解作为基础理论的半导体物理学。具体内容包括四个方面:1)半导体的材料属性,将量子力学、固体量子理论、半导体材料物理相结合,重点学习半导体材料的能带理论、载流子分布与输运及其导电特性等相关概念;2)半导体器件的基础,涉及了半导体的PN结、场效应管等基本器件的物理特性、工作原理与电压-电流特性;3)半导体器件的应用,包括了以反相器为代表的数字集成电路、与以放大器为典型的模拟集成电路的相关设计方法与性能分析;4)各种半导体器件的电路建模、以及采用计算机辅助设计软件SPICE的仿真。本课程对了解半导体器件的工作原理及其未来的发展是非常重要,是微电子学、电子科学与技术、应用物理与半导体材料等专业领域研究生的基础课程。

 

英文介绍

Semiconductor Physics & Devicesis important theoretical basis of modern integrated circuits design and fabrication. Through microelectronic technologies, a quite large-scale electronic circuit or part and even an equipment or system can be designed and integrated on a small silicon chip or other semiconductor chip. This relates to many disciplines of very broad contents such as semiconductor physics, semiconductor devices, various microelectronic technologies, design of electronic circuits and systems, computer-aided design, test etc. The main contents of this course include four parts: 1) semiconductor material physics, which brings together quantum mechanics, the quantum theory of solids, semiconductor material physics, and focuses on energy band theory, carrier distribution and transport phenomenon, and current conduction property of semiconductor materials; 2) semiconductor device fundamental, which covers the device physics, operation and voltage-current characteristics of PN junction and MOSFET; 3) semiconductor device application, which introduces design and performance analysis of inverter as the basic component of digital integrated circuits and amplifier as the classic component of analog integrated circuits.; 4) modeling and simulation based on CAD software SPICE of various semiconductor devices. Understanding semiconductor physics helps to design semiconductor devices, and will also be a benefit in understanding and perhaps in developing new semiconductor devices. “Semiconductor Physics and Devices” is the basic course of the postgraduates in the speciality areas of microelectronics, electronic engineering, applied physics and semiconductor materials etc.

 

教学大纲(Course Outline):

 

1.    VLSI Fabrication Technology: IC technologies, IC fabrication step, CMOS devices, VLSI layout.

2.    The Crystal Structure of Solids: semiconductor materials, types of solids, space lattices, atomic bonding, imperfection and doping in solids.

3.    Introduction to Quantum Mechanics: Principles of Quantum Mechanics, Schrodinger wave equation, the electron behavior in an atom.

4.     Introduction to Quantum Theory of Solids: Energy band theory, Statistical behavior of electrons in a crystal.  

5.    The Semiconductor in Equilibrium: The concentration of electrons and holes, the properties of an intrinsic semiconductor, the properties of an semiconductor with impurities (dopants).

6.    Carrier Transport Phenomenon: thermal motion, carrier drift, carrier diffusion.

7.    Non equilibrium Excess Carriers in Semiconductors: the excess carrier generation rate and recombination rate, the ambipolar transport equation.

8.    PN junction: semiconductor electrostatics in thermal equilibrium, electrostatics of pn junction in equilibrium, pn junction under bias, I-V characteristics.

9.    Diodes: Ideal diode, terminal characteristics of junction diodes, analysis of diode circuits, diode circuit models.

10. MOSFET: MOS Electrostatics, MOSFET_I-V_characteristics, MOSFET Equivalent Circuit Models

11. CMOS inverter: characteristics of CMOS inverter, high-speed model, delay analysis.

12. Transistor amplifier: amplifier fundamentals, common source amplifier, common source amplifier with current source supply, common-drain amplifier, common-gate amplifier.  

 

 

课程进度计划(Course Schedule):

Week 1: Introduction and VLSI Fabrication Technology

Week 2: The Crystal Structure of Solids

Week 3: Introduction to Quantum Mechanics

Week 4: Introduction to Quantum Theory of Solids

Week 5: The Semiconductor in Equilibrium

Week 6: Carrier Transport Phenomenon

Week 7: Non equilibrium Excess Carriers in Semiconductors

Week 8-9: PN junction

Week 10-11: Diodes

Week 12-13: MOSFET

Week 14-15: CMOS inverter

Week 16: Transistor amplifier

 

课程考核要求(Course Examination Requirements)

30% Attendance +30% Homework + 40% Final exam

 

参考文献(Course References)

[1] Dona H. Neamen, Semiconductor physics and devices, McGraw-Hill Higher- Education.

[2] Howe and Sodini , Microelectronics: An Integrated Approach, Prencell hall.

[3] Sedra/Smith, Microelectronic circuits, fourth edition, New York, oxford, oxford university press.

[4] Jan M. Rabaey, Digital Integrated circuits- a design perspective, Second Edition, Prentice hall.

 

 

访问数量:
 a